
Lawrence Berkeley National Laboratory Super Computing ‘981

Preliminary Description of

Anchor Toolkit
Srilekha Mudumbai, Abdelilah Essiari and William Johnston

http://www-itg.lbl.gov/Akenti
Imaging and Distributed Collaboration Group

Lawrence Berkeley National Laboratory, Berkeley 94720

Abstract: The Anchor Toolkit handles the
transmission and secure management of mobile
agents in a heterogeneous distributed computing
environment.

Introduction

A Software agent is “ a software entity that
functions continuously and autonomously in a
particular environment, often inhabited by other
agents and processes” (Shoham 19971).

An agent can be classified based on the tasks it is
assigned. It can be mobile (able to migrate from
one system to another), collaborative (expected
to work with other agents in a system towards a
common goal), communicative (expected to
communicate with other agents to gather
information), or may exhibit several other
behaviors. A mobile agent can be described as
computing code that carries its state from one
agent system (machine) to another in order to
execute at the destination. It either executes its
task autonomously or by communicating with
other agents.

Mobile agent technology is an emerging
technology that facilitates intelligent
interoperability in software systems with
minimal human interaction.

Current computing environments often consist of
distributed software running on heterogeneous
platforms. Some of the problems that arise in
such an environment include maintaining
consistent software, monitoring remote
executions, asynchronous interaction of remote
events, and using heterogeneous systems. Mobile
agents can be used to help solve these problems.

Agent Services

Mobile agents can provide a wide variety of
services. Some examples are: fault tolerance and
recovery (when a resource server dies, an agent
can either continue the service provided by that

server or restart the server); distributed version
control (if the same application is distributed on
different hosts, an agent can keep the version of
these applications consistent); monitoring (an
agent can monitor resources that are accessed in
a system at real time); provide an audit trail (an
agent can report a history of accesses made on a
resource server for a particular time period).

Security is one of the most challenging issues
that arises when attempting to send executable
code to a remote system.

Anchor toolkit addresses the following issues:

• The agent systems have to identify and trust
each other and be able to communicate in a
secure fashion.

• The code must be transmitted in a manner
such that the receiving host can verify its
integrity.

• The execution host may restrict the actions
the mobile code may perform (e.g. limiting
access to local files or the amount of
resources that it may use).

• In case of the agent’s failure, the execution
host should securely notify the sending host.

The Anchor toolkit is designed by LBL to enable
agent systems to address these problems. The
emphasis of the toolkit is anchoring trusted
agents coming from secure systems and assuring
their successful execution.

Agents can be implemented to perform different
functions once we have an agent system
architecture that meets the above issues.

Security Considerations

Security is essential in a system that allows
execution of code migrated from remote systems.
An agent system must be authenticated before
sending its agents. Agent tasks should be subject
to access control in order to protect local
resources. An agent’s integrity, and possibly

Lawrence Berkeley National Laboratory Super Computing ‘982

confidentiality, must be ensured as a prerequisite
to access control and subsequent operation on the
remote system. The Secure Sockets Layer (SSL3)
protocol provides basic authentication,
confidentiality, and integrity. SSL relies on the
X.509 standard that associates an identity with
its public key in the form of a digital certificate
signed by a Certificate Authority. Agent systems
mutually authenticate one another using SSL to
exchange X.509 identity certificates. An agent or
its system presents the agent’s X.509 certificate
to authenticate itself and to establish a secure
(encrypted) connection. Access control is
exercised by setting policies for access to the
resources. LBL has implemented a distributed
access control system, called Akenti4, that
enables distributed stakeholders to define access
control policies for distributed resources. Akenti
uses digitally signed certificates for the
distributed management of access rights for
resources that have multiple, independent, and
geographically dispersed stakeholders.

An access policy for a resource is defined by the
stakeholders as a set of use-conditions, or
requirements, that must be met before access is
granted. A simple use-condition would be
"organization=LBL" which states that only

identities that belong to LBL can access the
resource. When an agent attempts to access the
resource, Anchor's security manager is
automatically invokes Akenti to determine the
capabilities (actions) allowed for this agent.
Akenti's policy engine takes the identity of the
agent and the resource it wants to access, then
collects all the use-conditions set for that
resource from the Internet. If all of the use-
conditions are met, the capabilities are matched
against the action the agent tries to perform. If
there is a match, the agent is allowed to execute
that action; otherwise it is forbidden to do so.

Java SSL

We use the IAIK6 toolkit along with Java
Cryptography Extensions (JCE) for encrypted
SSL communication between agent servers. SSL
is comprised of two protocols: the record
protocol and the handshake protocol. The record
protocol defines the way that messages passed
between peers are encapsulated. At any point in
time it has a set of parameters, known as a cipher
suite, associated with it, which define the
cryptographic methods being used. IAIK allows
you to set a list of cipher suites the protocol can
support. The handshake protocol defines the way

CLIENT
RESOURCE

Access Control
Gateway

 AKENTI
policy based
access control
 engine)

Stakeholders
use-condition

(policy)

User’s required
attributes

Identity
verification

(2) access
validation

(1) attempted access
 is routed to the
 access control
 engine.

(3) Secure communication
 established based on policy
 validated access

POLICY BASED ACCESS CONTROL (Figure 1)

Lawrence Berkeley National Laboratory Super Computing ‘983

of establishing trust between the communication
peers. There is a risk in agent servers trusting
each other. Hence trust between these servers has
to be two-way. This is called mutual
authentication. The identity of the server is
presented as an X509 certificate which gives
information about the Certificate Authority who
signed the certificate and the identity for whom it
is signed. If the agent server trusts the CA, it
may accept the other server’s identity with or
without further restrictions. Once authentication
of the two parties is done, the Anchor Security
Manager is used to authorize the identities.
Currently agents assume the identity of the
server from which they originated.

Anchor Security Manager

Java architecture facilitates the implementation
of Anchor Toolkit’s own security manager by
extending its security manager which controls
access to resources at runtime at a very low
level. Java’s use of a “sandbox” provides the
capability of separating agent servers from the
agents that migrate into the system by the use of

Class Loaders. The architecture permits the
toolkit to implement its own class loader7.

When trusted agent code has been allowed to
enter the system, it is subjected to runtime
restrictions from accessing resources, as it is not
authorized for any access yet. The Anchor
security manager enforces a particular security
policy for each resource that can be accessed.
There is an Agent Class Loader, which is
responsible for loading mobile code, and this in
turn informs Anchor Security Manager to
execute access control if the mobile agent is not
authorized. Anchor Security Manager overrides
the methods of the Java Security Manager to
invoke Akenti during runtime for access control
decisions.

Implementation Status

The feasibility of incorporating Akenti Access
Control into existing agent systems like IBM’s
Aglets and ObjectSpace’s Voyager was
explored. Aglets were developed by IBM to
extend the concept of an applet to Java

Agent Server/
Sandbox

HOST-1

Agent Server/
Sandbox

HOST-2

Agent
Security
Manager

Interceptor

Akenti
Policy
Engine

POLICY IDENTITY ATTRIBUTES

LOCAL
RESOURCES

ACCESS
VALIDATIONSSL

AKENTI AND MOBILE AGENTS (Figure 2)

Lawrence Berkeley National Laboratory Super Computing ‘984

applications. The idea is to provide mobility and
state to applets and applications. Voyager is a
platform for agent-enhanced distributed
computing in Java. It combines the properties of
a Java-based object request broker with those of
a mobile agent system. These systems provide an
extensive set of object messaging capabilities
and transfer mechanisms but no secure
communication facilities. However, encryption
can be added to these systems if required. Also,
these systems lack support to monitor the agent
resource usage or execution. The main reason
that prompted us to design the Anchor toolkit is
the impossibility of modifying the security
manager provided by these systems. For our
purposes, it is essential to incorporate Akenti
access control mechanism in the security
manager.

The Anchor toolkit is in the process of
implementation. It will provide for secure
transmission of agents and secure
communication between agents based on Public
Key Infrastructure (PKI5) credentials. It will
control an agent’s resource usage based on
Akenti policy files, and monitor agent execution.
The services can be used by a wide class of
agents.

References

[1] Software Agents
 Jeffrey M. Bradshaw
[2] Programming and Deploying JAVA
 MOBILE AGENTS with Aglets
 Danny B. Lange, Mitsuru Oshima
[3] SSL
http://developer.netscape.com/docs/manuals/secu
rity/sslin/
[4] Akenti - A distributed access control
 system
 http://www-itg.lbl.gov/Akenti
[5] Applied Cryptography
 Bruce Scheiner
[6] IAIK Java Security
 http://jcewww.iaik.tu-graz.ac.at/index.htm
[7] Java Network Security
 Robert Macgregor, Dave Durbin,
 John Owlett, Andrew Yeomans.
[8] ObjectSpace Voyager
 http://www.objectspace.com

